
 

Factor analysis

22C H A P T E R

Factor analysis allows an examination of the

potential interrelationships among a number of

variables and the evaluation of the underlying

reasons for these relationships. 

After reading this chapter, you should be able to:

1 describe the concept of factor analysis and explain how it is

different from analysis of variance, multiple regression and

discriminant analysis;

2 discuss the procedure for conducting factor analysis, including

problem formulation, construction of the correlation matrix,

selection of an appropriate method, determination of the number

of factors, rotation and interpretation of factors;

3 understand the distinction between principal component factor

analysis and common factor analysis methods;

4 explain the selection of surrogate variables and their application

with emphasis on their use in subsequent analysis;

5 describe the procedure for determining the fit of a factor analysis

model using the observed and the reproduced correlations.

Objectives

Stage 1

Problem definition

Stage 2

Research approach

developed

Stage 3

Research design

developed

Stage 4

Fieldwork or data

collection

Stage 6

Report preparation

and presentation

Stage 5

Data preparation

and analysis



 

Overview

In analysis of variance (Chapter 19), regression (Chapter 20) and discriminant analysis
(Chapter 21), one of the variables is clearly identified as the dependent variable. We now
turn to a procedure, factor analysis, in which variables are not classified as independent or
dependent. Instead, the whole set of interdependent relationships among variables is exam-
ined. This chapter discusses the basic concept of factor analysis and gives an exposition of
the factor model. We describe the steps in factor analysis and illustrate them in the context
of principal components analysis. Next, we present an application of common factor analy-
sis. To begin, we provide some examples to illustrate the usefulness of factor analysis.

Factor analysis1

In the GlobalCash Project, the respondents’ ratings of 11 service quality statements were

factor analysed to determine the underlying service quality factors. Four factors emerged:

close support, speed of activities, coping with errors and matching efficiency expectations.

These factors, along with individual country characteristics, were used to profile market seg-

ments formed as a result of clustering. ■

Personal alarms2

In a study of personal alarms, women were asked to rate eight personal alarms using the fol-

lowing 15 statements:

1 Feels comfortable in the hand

2 Could be easily kept in the pocket

3 Would fit easily into a handbag

4 Could be easily worn on the person

5 Could be carried to be very handy when needed

6 Could be set off almost as a reflex action

7 Would be difficult for an attacker to take it off me

8 Could keep a very firm grip on it if attacked

9 An attacker might be frightened that I might attack him with it

10 Would be difficult for an attacker to switch off

11 Solidly built

12 Would be difficult to break

13 Looks as if it would give off a very loud noise

14 An attacker might have second thoughts about attacking me if he saw me with it

15 I would be embarrassed to carry it around with me

The question was ‘could these 15 variables be reduced to a smaller number of derived vari-

ables, known as factors, in such a way that too much information was not lost?’ Factor

analysis enabled these 15 variables to be reduced to four underlying dimensions or factors that

women used to evaluate the alarms. Factor 1 seemed to measure a dimension of ‘size’, on a

continuum of small to large. Factor 2 tapped into aspects of the ‘appearance’ of a personal

alarm. Factor 3 revealed ‘robustness’ characteristics, with factor 4 related to ‘hand feel’. ■

Basic concept

Factor analysis is a general name denoting a class of procedures primarily used for
data reduction and summarisation. In marketing research, there may be a large
number of variables, most of which are correlated and which must be reduced to a
manageable level. Relationships among sets of many interrelated variables are exam-
ined and represented in terms of a few underlying factors. For example, bank image
may be measured by asking respondents to evaluate banks on a series of items on a
semantic differential scale or a Likert scale. These item evaluations may then be
analysed to determine the factors underlying bank image.
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In analysis of variance, multiple regression and discriminant analysis, one variable
is considered the dependent or criterion variable, and the others are considered inde-
pendent or predictor variables. But no such distinction is made in factor analysis.
Rather, factor analysis is an interdependence technique in that an entire set of inter-
dependent relationships is examined.3

Factor analysis is used in the following circumstances:

1 To identify underlying dimensions, or factors, that explain the correlations among
a set of variables. For example, a set of lifestyle statements may be used to measure
the psychographic profiles of consumers. These statements may then be factor
analysed to identify the underlying psychographic factors.4

2 To identify a new, smaller, set of uncorrelated variables to replace the original set of
correlated variables in subsequent multivariate analysis (regression or discriminant
analysis). For example, the psychographic factors identified may be used as independ-
ent variables in explaining the differences between loyal and non-loyal consumers.

3 To identify a smaller set of salient variables from a larger set for use in subsequent
multivariate analysis. For example, a few of the original lifestyle statements that
correlate highly with the identified factors may be used as independent variables to
explain the differences between the loyal and non-loyal users.

Factor analysis has numerous applications in marketing research. For example:

■ Factor analysis can be used in market segmentation for identifying the underlying
variables on which to group the customers. New car buyers might be grouped
based on the relative emphasis they place on economy, convenience, performance,
comfort and luxury. This might result in five segments: economy seekers, conven-
ience seekers, performance seekers, comfort seekers and luxury seekers.

■ In product research, factor analysis can be employed to determine the brand attrib-
utes that influence consumer choice. Toothpaste brands might be evaluated in
terms of protection against cavities, whiteness of teeth, taste, fresh breath and price.

■ In advertising studies, factor analysis can be used to understand the media con-
sumption habits of the target market. The users of frozen foods may be heavy
viewers of satellite TV, see a lot of videos, and listen to country music.

■ In pricing studies, factor analysis can be used to identify the characteristics of
price-sensitive consumers. For example, these consumers might be methodical,
economy minded and home centred.

Factor analysis model

Mathematically, factor analysis is somewhat similar to multiple regression analysis in that
each variable is expressed as a linear combination of underlying factors. The amount of
variance a variable shares with all other variables included in the analysis is referred to as
communality. The covariation among the variables is described in terms of a small
number of common factors plus a unique factor for each variable. These factors are not
overtly observed. If the variables are standardised, the factor model may be represented as

Xi = Ai1F1 + Ai2F2 + Ai3F3 + . . . + AimFm + ViUi

where Xi = ith standardised variable
Aij = standardised multiple regression coefficient of variable i on common

factor j
F = common factor

Vi = standardised regression coefficient of variable i on unique factor i
Ui = the unique factor for variable i

m = number of common factors.

Factor analysis model
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The unique factors are correlated with each other and with the common factors.5 The
common factors themselves can be expressed as linear combinations of the observed
variables

Fi = Wi1X1 + Wi2X2 + Wi3X3 + . . . + WikXk

where Fi = estimate of ith factor
Wi = weight or factor score coefficient
k = number of variables.

It is possible to select weights or factor score coefficients so that the first factor
explains the largest portion of the total variance. Then a second set of weights can be
selected so that the second factor accounts for most of the residual variance, subject
to being uncorrelated with the first factor. This same principle could be applied to
selecting additional weights for the additional factors. Thus, the factors can be esti-
mated so that their factor scores, unlike the values of the original variables, are not
correlated. Furthermore, the first factor accounts for the highest variance in the data,
the second factor the second highest, and so on. A technical treatment of the factor
analysis model is presented in Appendix 22A.

The key statistics associated with factor analysis are as follows:

Bartlett’s test of sphericity. Bartlett’s test of sphericity is a test statistic used to examine
the hypothesis that the variables are uncorrelated in the population. In other words,
the population correlation matrix is an identity matrix; each variable correlates per-
fectly with itself (r = 1) but has no correlation with the other variables (r = 0).

Communality. Communality is the amount of variance a variable shares with all the
other variables being considered. This is also the proportion of variance explained
by the common factors.

Correlation matrix. A correlation matrix is a lower triangle matrix showing the
simple correlations, r, between all possible pairs of variables included in the analy-
sis. The diagonal elements, which are all 1, are usually omitted.

Eigenvalue. The eigenvalue represents the total variance explained by each factor.

Factor loadings. Factor loadings are simple correlations between the variables and the
factors.

Factor loading plot. A factor loading plot is a plot of the original variables using the
factor loadings as coordinates.

Factor matrix. A factor matrix contains the factor loadings of all the variables on all
the factors extracted.

Factor scores. Factor scores are composite scores estimated for each respondent on
the derived factors.

Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. The Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy is an index used to examine the
appropriateness of factor analysis. High values (between 0.5 and 1.0) indicate that
factor analysis is appropriate. Values below 0.5 imply that factor analysis may not
be appropriate.

Percentage of variance. The percentage of the total variance attributed to each factor.

Residuals. Residuals are the differences between the observed correlations, as given in
the input correlation matrix, and the reproduced correlations, as estimated from
the factor matrix.

Scree plot. A scree plot is a plot of the eigenvalues against the number of factors in
order of extraction.
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We describe the uses of these statistics in the next section, in the context of the proce-
dure for conducting factor analysis.

Conducting factor analysis

The steps involved in conducting factor analysis are illustrated in Figure 22.1. The first
step is to define the factor analysis problem and identify the variables to be factor
analysed. Then a correlation matrix of these variables is constructed and a method of
factor analysis is selected. The researcher decides on the number of factors to be
extracted and the method of rotation. Next, the rotated factors should be interpreted.
Depending on the objectives, the factor scores may be calculated, or surrogate variables
selected, to represent the factors in subsequent multivariate analysis. Finally, the fit of
the factor analysis model is determined. We discuss these steps in more detail below.6

Formulate the problem 

Formulating the problem includes several tasks. First, the objectives of factor analysis
should be identified. The variables to be included in the factor analysis should be spec-
ified based on past research (quantitative or qualitative), theory, and judgement of the
researcher. It is important that the variables be appropriately measured on an interval
or ratio scale. An appropriate sample size should be used. As a rough guideline, there
should be at least four or five times as many observations (sample size) as there are
variables.7 In many marketing research situations, the sample size is small, and this
ratio is considerably lower. In these cases, the results should be interpreted cautiously.

To illustrate factor analysis, suppose that the researcher wants to determine the
underlying benefits consumers seek from the purchase of a toothpaste. A sample of
237 respondents was interviewed using street interviewing. The respondents were
asked to indicate their degree of agreement with the following statements using a
seven-point scale (1 = strongly disagree, 7 = strongly agree):

Conducting factor analysis

575

Formulate the problem

Construct the correlation matrix

Determine the number of factors

Rotate factors

Interpret factors

Calculate

factor

scores

Select

surrogate

variables

Determine model fit

Determine the method of factor analysis

Figure 22.1

Conducting factor

analysis



 

V
1

It is important to buy a toothpaste that prevents cavities.

V
2

I like a toothpaste that gives shiny teeth.

V
3

A toothpaste should strengthen your gums.

V
4

I prefer a toothpaste that freshens breath.

V
5

Prevention of tooth decay should be an important benefit offered by a toothpaste.

V
6

The most important consideration in buying a toothpaste is attractive teeth.

The data obtained are given in Table 22.1. A correlation matrix was constructed
based on these ratings data.
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Respondent V
1

V
2

V
3

V
4

V
5

V
6

number

1 7.00 3.00 6.00 4.00 2.00 4.00

2 1.00 3.00 2.00 4.00 5.00 4.00

3 6.00 2.00 7.00 4.00 1.00 3.00

4 4.00 5.00 4.00 6.00 2.00 5.00

5 1.00 2.00 2.00 3.00 6.00 2.00

6 6.00 3.00 6.00 4.00 2.00 4.00

7 5.00 3.00 6.00 3.00 4.00 3.00

8 6.00 4.00 7.00 4.00 1.00 4.00

9 3.00 4.00 2.00 3.00 6.00 3.00

10 2.00 6.00 2.00 6.00 7.00 6.00

11 6.00 4.00 7.00 3.00 2.00 3.00

12 2.00 3.00 1.00 4.00 5.00 4.00

13 7.00 2.00 6.00 4.00 1.00 3.00

14 4.00 6.00 4.00 5.00 3.00 6.00

15 1.00 3.00 2.00 2.00 6.00 4.00

16 6.00 4.00 6.00 3.00 3.00 4.00

17 5.00 3.00 6.00 3.00 3.00 4.00

18 7.00 3.00 7.00 4.00 1.00 4.00

19 2.00 4.00 3.00 3.00 6.00 3.00

20 3.00 5.00 3.00 6.00 4.00 6.00

21 1.00 3.00 2.00 3.00 5.00 3.00

22 5.00 4.00 5.00 4.00 2.00 4.00

23 2.00 2.00 1.00 5.00 4.00 4.00

24 4.00 6.00 4.00 6.00 4.00 7.00

25 6.00 5.00 4.00 2.00 1.00 4.00

26 3.00 5.00 4.00 6.00 4.00 7.00

27 4.00 4.00 7.00 2.00 2.00 5.00

28 3.00 7.00 2.00 6.00 4.00 3.00

29 4.00 6.00 3.00 7.00 2.00 7.00

30 2.00 3.00 2.00 4.00 7.00 2.00

Table 22.1 Toothpaste attribute ratings



 

Construct the correlation matrix

The analytical process is based on a matrix of correlations between the variables.
Valuable insights can be gained from an examination of this matrix. For factor analy-
sis to be meaningful, the variables should be correlated. In practice, this is usually the
case. If the correlations between all the variables are small, factor analysis may not be
appropriate. We would also expect that variables that are highly correlated with each
other would also highly correlate with the same factor or factors.

Formal statistics are available for testing the appropriateness of the factor model.
Bartlett’s test of sphericity can be used to test the null hypothesis that the variables are
uncorrelated in the population; in other words, the population correlation matrix is
an identity matrix. In an identity matrix, all the diagonal terms are 1, and all off-diag-
onal terms are 0. The test statistic for sphericity is based on a chi-square
transformation of the determinant of the correlation matrix. A large value of the test
statistic will favour the rejection of the null hypothesis. If this hypothesis cannot be
rejected, then the appropriateness of factor analysis should be questioned. Another
useful statistic is the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. This
index compares the magnitudes of the observed correlation coefficients with the mag-
nitudes of the partial correlation coefficients. Small values of the KMO statistic
indicate that the correlations between pairs of variables cannot be explained by other
variables and that factor analysis may not be appropriate.

The correlation matrix, constructed from the data obtained to understand tooth-
paste benefits, is shown in Table 22.2. There are relatively high correlations among V1

(prevention of cavities), V3 (strong gums) and V5 (prevention of tooth decay). We
would expect these variables to correlate with the same set of factors. Likewise, there are
relatively high correlations among V2 (shiny teeth), V4 (fresh breath) and V6 (attractive
teeth). These variables may also be expected to correlate with the same factors.8

The results of factor analysis are given in Table 22.3. The null hypothesis, that the
population correlation matrix is an identity matrix, is rejected by Bartlett’s test of
sphericity. The approximate chi-square statistic is 111.314 with 15 degrees of freedom
which is significant at the 0.05 level. The value of the KMO statistic (0.660) is also
large (> 0.5). Thus factor analysis may be considered an appropriate technique for
analysing the correlation matrix of Table 22.2.

Determine the method of factor analysis

Once it has been determined that factor analysis is an appropriate technique for
analysing the data, an appropriate method must be selected. The approach used to
derive the weights or factor score coefficients differentiates the various methods of
factor analysis. The two basic approaches are principal components analysis and
common factor analysis. In principal components analysis, the total variance in the
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Variables V
1

V
2

V
3

V
4

V
5

V
6

V
1

1.00

V
2

–0.053 1.00

V
3

0.873 –0.155 1.00

V
4

–0.086 0.572 –0.248 1.00

V
5

–0.858 0.020 –0.778 –0.007 1.00

V
6

0.004 0.640 –0.018 0.640 –0.136 1.00

Table 22.2 Correlation matrix



 

data is considered. The diagonal of the correlation matrix consists of unities, and full
variance is brought into the factor matrix. Principal components analysis is recom-
mended when the primary concern is to determine the minimum number of factors
that will account for maximum variance in the data for use in subsequent multivari-
ate analysis. The factors are called principal components.

In common factor analysis, the factors are estimated based only on the common
variance. Communalities are inserted in the diagonal of the correlation matrix. This
method is appropriate when the primary concern is to identify the underlying dimen-
sions and the common variance is of interest. This method is also known as principal

axis factoring.
Other approaches for estimating the common factors are also available. These

include the methods of unweighted least squares, generalised least squares, maximum
likelihood, alpha method and image factoring. These methods are complex and are
not recommended for inexperienced users.9

Table 22.3 shows the application of principal components analysis to the tooth-
paste example.
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Variable Initial Extraction

V
1

1.000 0.926

V
2

1.000 0.723

V
3

1.000 0.894

V
4

1.000 0.739

V
5

1.000 0.878

V
6

1.000 0.790

Table 22.3 Results of principal components analysis

Bartlett test of sphericity 

Approximate chi-square = 111.314, df = 15, significance = 0.00000

Kaiser-Meyer-Olkin measure of sampling adequacy = 0.660

Communalities

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.731 45.520 45.520

2 2.218 36.969 82.488

3 0.442 7.360 89.848

4 0.341 5.688 95.536

5 0.183 3.044 98.580

6 0.085 1.420 100.000

Initial eigenvalues

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.731 45.520 45.520

2 2.218 36.969 82.488

Extraction sums of squared loadings
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Factor 1 Factor 2

V
1

0.928 0.253

V
2

–0.301 0.795

V
3

0.936 0.131

V
4

–0.342 0.789

V
5

–0.869 –0.351

V
6

–0.177 0.871

Table 22.3 Continued

Factor matrix

Factor 1 Factor 2

V
1

0.962 –0.027

V
2

–0.057 0.848

V
3

0.934 –0.146

V
4

–0.098 0.854

V
5

–0.933 –0.084

V
6

0.083 0.885

Rotated factor matrix

Factor 1 Factor 2

V
1

0.358 0.011

V
2

–0.001 0.375

V
3

0.345 –0.043

V
4

–0.017 0.377

V
5

–0.350 –0.059

V
6

0.052 0.395

Factor score coefficient matrix

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.688 44.802 44.802

2 2.261 37.687 82.488

Rotation sums of squared loadings

Variables V
1

V
2

V
3

V
4

V
5

V
6

V
1

0.926* 0.024 –0.029 0.031 0.038 –0.053

V
2

–0.078 0.723* 0.022 –0.158 0.038 –0.105

V
3

0.902 –0.177 0.894* –0.031 0.081 0.033

V
4

–0.117 0.730 –0.217 0.739* –0.027 –0.107

V
5

–0.895 –0.018 0.859 0.020 0.878* 0.016

V
6

0.057 –0.746 –0.051 0.748 –0.152 0.790*

Reproduced correlation matrix

The lower left triangle contains the reproduced correlation matrix; the diagonal, the communalities; and the upper right

triangle, the residuals between the observed correlations and the reproduced correlations.



 

Under initial statistics, it can be seen that the communality for each variable, V1 to
V6, is 1.0 as unities were inserted in the diagonal of the correlation matrix. The table
labelled ‘Initial eigenvalues’ gives the eigenvalues. The eigenvalues for the factors are,
as expected, in decreasing order of magnitude as we go from factor 1 to factor 6. The
eigenvalue for a factor indicates the total variance attributed to that factor. The total
variance accounted for by all the six factors is 6.00, which is equal to the number of
variables. Factor 1 accounts for a variance of 2.731, which is (2.731/6) or 45.52% of
the total variance. Likewise, the second factor accounts for (2.218/6) or 36.97% of the
total variance, and the first two factors combined account for 82.49% of the total
variance. Several considerations are involved in determining the number of factors
that should be used in the analysis.

Determine the number of factors

It is possible to compute as many principal components as there are variables, but in
doing so, no parsimony is gained, i.e. we would not have summarised the information
nor revealed any underlying structure. To summarise the information contained in the
original variables, a smaller number of factors should be extracted. The question is, how
many? Several procedures have been suggested for determining the number of factors.
These included a priori determination and approaches based on eigenvalues, scree plot,
percentage of variance accounted for, split-half reliability, and significance tests.

A priori determination. Sometimes, because of prior knowledge, the researcher
knows how many factors to expect and thus can specify the number of factors to be
extracted beforehand. The extraction of factors ceases when the desired number of
factors have been extracted. Most computer programs allow the user to specify the
number of factors, allowing for an easy implementation of this approach.

Determination based on eigenvalues. In this approach, only factors with eigenval-
ues greater than 1.0 are retained; the other factors are not included in the model. An
eigenvalue represents the amount of variance associated with the factor. Hence, only
factors with a variance greater than 1.0 are included. Factors with variance less than
1.0 are no better than a single variable because, due to standardisation, each variable
has a variance of 1.0. If the number of variables is less than 20, this approach will
result in a conservative number of factors.

Determination based on scree plot. A scree plot is a plot of the eigenvalues against
the number of factors in order of extraction. The shape of the plot is used to deter-
mine the number of factors. Typically, the plot has a distinct break between the steep
slope of factors, with large eigenvalues and a gradual trailing off associated with the
rest of the factors. This gradual trailing off is referred to as the scree. Experimental
evidence indicates that the point at which the scree begins denotes the true number of
factors. Generally, the number of factors determined by a scree plot will be one or a
few more than that determined by the eigenvalue criterion.

Determination based on percentage of variance. In this approach, the number of
factors extracted is determined so that the cumulative percentage of variance
extracted by the factors reaches a satisfactory level. What level of variance is satisfac-
tory depends upon the problem. It is recommended that the factors extracted should
account for at least 60% of the variance.

Determination based on split-half reliability. The sample is split in half, and
factor analysis is performed on each half. Only factors with high correspondence of
factor loadings across the two sub-samples are retained.
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Determination based on significance tests. It is possible to determine the statisti-
cal significance of the separate eigenvalues and retain only those factors that are
statistically significant. A drawback is that with large samples (size greater than 200)
many factors are likely to be statistically significant, although from a practical view-
point many of these account for only a small proportion of the total variance.

In Table 22.3, we see that the eigenvalue greater than 1.0 (default option) results in
two factors being extracted. Our a priori knowledge tells us that toothpaste is bought
for two major reasons. The scree plot associated with this analysis is given in Figure
22.2. From the scree plot, a distinct break occurs at three factors. Finally, from the
cumulative percentage of variance accounted for, we see that the first two factors
account for 82.49% of the variance and that the gain achieved in going to three fac-
tors is marginal. Furthermore, split-half reliability also indicates that two factors are
appropriate. Thus, two factors appear to be reasonable in this situation.

The second column under the ‘Communalities’ heading in Table 22.3 gives relevant
information after the desired number of factors have been extracted. The communali-
ties for the variances under ‘Extraction’ are different from those under ‘Initial’ because
all of the variances associated with the variables are not explained unless all the fac-
tors are retained. The ‘Extraction sums of squared loadings’ table gives the variances
associated with the factors that are retained. Note that these are the same as those
under ‘Initial eigenvalues’. This is always the case in principal components analysis.
The percentage variance accounted for by a factor is determined by dividing the asso-
ciated eigenvalue by the total number of factors (or variables) and multiplying by 100.
Thus, the first factor accounts for (2.731/6) × 100 or 45.52% of the variance of the six
variables. Likewise, the second factor accounts for (2.218/6) × 100 or 36.967% of the
variance. Interpretation of the solution is often enhanced by a rotation of the factors.

Rotate factors

An important output from factor analysis is the factor matrix, also called the factor

pattern matrix. The factor matrix contains the coefficients used to express the stan-
dardised variables in terms of the factors. These coefficients, the factor loadings,
represent the correlations between the factors and the variables. A coefficient with a
large absolute value indicates that the factor and the variable are closely related. The
coefficients of the factor matrix can be used to interpret the factors.

Although the initial or unrotated factor matrix indicates the relationship between
the factors and individual variables, it seldom results in factors that can be inter-
preted, because the factors are correlated with many variables. For example, in Table
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22.3, factor 1 is at least somewhat correlated with five of the six variables (absolute
value of factor loading greater than 0.3). How should this factor be interpreted? In
such a complex matrix, it is difficult to interpret the factors. Therefore, through rota-
tion, the factor matrix is transformed into a simpler one that is easier to interpret.

In rotating the factors, we would like each factor to have non-zero, or significant,
loadings or coefficients for only some of the variables. Likewise, we would like each
variable to have non-zero or significant loadings with only a few factors, and if possi-
ble with only one. If several factors have high loadings with the same variable, it is
difficult to interpret them. Rotation does not affect the communalities and the per-
centage of total variance explained. The percentage of variance accounted for by each
factor does change, however. This is seen in Table 22.3. The variance explained by the
individual factors is redistributed by rotation. Hence, different methods of rotation
may result in the identification of different factors.

The rotation is called orthogonal rotation if the axes are maintained at right
angles. The most commonly used method for rotation is the varimax procedure. This
is an orthogonal method of rotation that minimises the number of variables with
high loadings on a factor, thereby enhancing the interpretability of the factors.10

Orthogonal rotation results in factors that are uncorrelated. The rotation is called
oblique rotation when the axes are not maintained at right angles, and the factors are
correlated. Sometimes, allowing for correlations among factors can simplify the factor
pattern matrix. Oblique rotation should be used when factors in the population are
likely to be strongly correlated.

In Table 22.3, by comparing the varimax rotated factor matrix with the unrotated
matrix (entitled factor matrix), we can see how rotation achieves simplicity and
enhances interpretability. Whereas five variables correlated with factor 1 in the unro-
tated matrix, only variables V1, V3 and V5 correlate highly with factor 1 after rotation.
The remaining variables – V2, V4 and V6 – correlate highly with factor 2.
Furthermore, no variable correlates highly with both the factors. The rotated factor
matrix forms the basis for interpretation of the factors.
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Interpret factors

Interpretation is facilitated by identifying the variables that have large loadings on the
same factor. That factor can then be interpreted in terms of the variables that load
high on it. Another useful aid in interpretation is to plot the variables, using the factor
loadings as coordinates. Variables at the end of an axis are those that have high load-
ings on only that factor and hence describe the factor. Variables near the origin have
small loadings on both the factors. Variables that are not near any of the axes are
related to both the factors. If a factor cannot be clearly defined in terms of the original
variables, it should be labelled as an undefined or a general factor.

In the rotated factor matrix of Table 22.3, factor 1 has high coefficients for variables
V1 (prevention of cavities) and V3 (strong gums), and a negative coefficient for V5 (pre-
vention of tooth decay is not important). Therefore, this factor may be labelled a health
benefit factor. Note that a negative coefficient for a negative variable (V5) leads to a posi-
tive interpretation that prevention of tooth decay is important. Factor 2 is highly related
with variables V2 (shiny teeth), V4 (fresh breath) and V6 (attractive teeth). Thus factor 2
may be labelled a social benefit factor. A plot of the factor loadings, given in Figure 22.3,
confirms this interpretation. Variables V1, V3, and V5 (denoted 1, 3, and 5, respectively)
are at the end of the horizontal axis (factor 1), with V5 at the end opposite to V1 and V3,
whereas variables V2, V4 and V6 (denoted 2, 4 and 6) are at the end of the vertical axis
(factor 2). One could summarise the data by stating that consumers appear to seek two
major kinds of benefits from a toothpaste: health benefits and social benefits.

Calculate factor scores

Following interpretation, factor scores can be calculated, if necessary. Factor analysis
has its own stand-alone value. If the goal of factor analysis is to reduce the original set
of variables to a smaller set of composite variables (factors) for use in subsequent
multivariate analysis, however, it is useful to compute factor scores for each respon-
dent. A factor is simply a linear combination of the original variables. The factor
scores for the ith factor may be estimated as follows:

Fi = Wi1X1 + Wi2X2 + Wi3X3 + . . . + WikXk

where the symbols are as defined earlier in the chapter.
The weights or factor score coefficients used to combine the standardised variables

are obtained from the factor score coefficient matrix. Most computer programs allow
you to request factor scores. Only in the case of principal components analysis is it
possible to compute exact factor scores. Moreover, in principal components analysis,
these scores are uncorrelated. In common factor analysis, estimates of these scores are
obtained, and there is no guarantee that the factors will be uncorrelated with each
other. Factor scores can be used instead of the original variables in subsequent multi-
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variate analysis. For example, using the factor score coefficient matrix in Table 22.3,
one could compute two factor scores for each respondent. The standardised variable
values would be multiplied by the corresponding factor score coefficients to obtain
the factor scores.

Select surrogate variables

Sometimes, instead of computing factor scores, the researcher wishes to select surro-
gate variables. Selection of substitute or surrogate variables involves singling out
some of the original variables for use in subsequent analysis. This allows the
researcher to conduct subsequent analysis and to interpret the results in terms of
original variables rather than factor scores. By examining the factor matrix, one could
select for each factor the variables rather than factor scores. By examining the factor
matrix, one could select for each factor the variable with the highest loading on that
factor. That variable could then be used as a surrogate variable for the associated
factor. This process works well if one factor loading for a variable is clearly higher
than all other factor loadings. The choice is not as easy, however, if two or more vari-
ables have similarly high loadings. In such a case, the choice between these variables
should be based on theoretical and measurement considerations. For example, theory
may suggest that a variable with a slightly lower loading is more important than one
with a slightly higher loading. Likewise, if a variable has a slightly lower loading but
has been measured more precisely, it should be selected as the surrogate variable. In
Table 22.3, the variables V1, V3 and V5 all have high loadings on factor 1, and all are
fairly close in magnitude, although V1 has relatively the highest loading and would
therefore be a likely candidate. However, if prior knowledge suggests that prevention
of tooth decay is a very important benefit, V5 would be selected as the surrogate for
factor 1. Also, the choice of a surrogate for factor 2 is not straightforward. Variables
V2, V4 and V6 all have comparable high loadings on this factor. If prior knowledge
suggests that attractive teeth are the most important social benefit sought from a
toothpaste, the researcher would select V6.

Determine the model fit

The final step in factor analysis involves the determination of model fit. A basic
assumption underlying factor analysis is that the observed correlation between vari-
ables can be attributed to common factors. Hence, the correlations between the
variables can be deduced or reproduced from the estimated correlations between the
variables and the factors. The differences between the observed correlations (as given
in the input correlation matrix) and the reproduced correlations (as estimated from
the factor matrix) can be examined to determine model fit. These differences are
called residuals. If there are many large residuals, the factor model does not provide a
good fit to the data and the model should be reconsidered. In Table 22.3, we see that
only five residuals are larger than 0.05, indicating an acceptable model fit.

The following example further illustrates principal components factoring in the
context of trade promotion.

Manufacturing promotion components11

The objective of this study was to develop a comprehensive inventory of manufacturer-

controlled trade promotion variables and to demonstrate that an association exists between

these variables and the retailer’s promotion support decision. Retailer or trade support was

defined operationally as the trade buyer’s attitude towards the promotion.

Factor analysis was performed on the explanatory variables with the primary goal of data

reduction. The principal components method, using varimax rotation, reduced the 30

explanatory variables to eight factors having eigenvalues greater than 1.0. For the purpose of
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Surrogate variables

A subset of original variables

selected for use in

subsequent analysis.
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interpretation, each factor was composed of variables that loaded 0.40 or higher on that

factor. In two instances, where variables loaded 0.40 or above on two factors, each variable

was assigned to the factor where it had the highest loading. Only one variable, ease of han-

dling/stocking at retail, did not load at least 0.40 on any factor. In all, the eight factors

explained 62% of the total variance. Interpretation of the factor-loading matrix was straight-

forward. Table 1 lists the factors in the order in which they were extracted.
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Factor Factor interpretation Loading Variables included in the factor

(% variance explained)

F1 Item importance (16.3%) 0.77 Item is significant enough to warrant promotion

0.75 Category responds well to promotion

0.66 Closest trade competitor is likely to promote item

0.64 Importance of promoted product category

0.59 Item regular (non-deal) sales volume

0.57 Deal meshes with trade promotional requirements

Buyer’s estimate of sales increase on the basis of:

F2 Promotion elasticity (9.3%) 0.86 Price reduction and display

0.82 Display only

0.80 Price reduction only

0.70 Price reduction, display and advertising

Manufacturer’s brand support in the form of:

F3 Manufacturer brand support (8.2%) 0.85 Coupons

0.81 Radio and television advertising

0.80 Newspaper advertising

0.75 Point of purchase promotion (e.g. display)

F4 Manufacturer reputation (7.3%) 0.72 Manufacturer’s overall reputation

0.72 Manufacturer’s cooperation in meeting trade’s 

promotional needs

0.64 Manufacturer’s cooperation on emergency orders

0.55 Quality of sales presentation

0.51 Manufacturer’s overall product quality

F5 Promotion wearout (6.4%) 0.93 Product category is over-promoted

0.93 Item is over-promoted

F6 Sales velocity (5.4%) –0.81 Brand market share ranka

0.69 Item regular sales volumea

0.46 Item regular sales volume

F7 Item profitability (4.5%) 0.79 Item regular gross margin

0.72 Item regular gross margina

0.49 Reasonableness of deal performance requirements

F8 Incentive amount (4.2%) 0.83 Absolute amount of deal allowances

0.81 Deal allowances as per cent of regular trade costa

0.49 Absolute amount of deal allowancesa

Table 1  Factors influencing trade promotional support

a Denotes objectives (archival) measure.



 

Stepwise discriminant analysis was conducted to determine which, if any, of the eight fac-

tors predicted trade support to a statistically significant degree. The factor scores for the eight

factors were the explanatory variables. The dependent variable consisted of the retail buyer’s

overall rating of the deal (rating), which was collapsed into a three-group (low, medium and

high) measure of trade support. The results of the discriminant analyses are shown in Table 2.

All eight entered the discriminant functions. Goodness-of-fit measures indicated that, as a

group, the eight factors discriminated between high, medium and low levels of trade support.

Multivariate F ratios, indicating the degree of discrimination between each pair of groups, were

significant at p < 0.001. Correct classification into high, medium and low categories was

achieved for 65% of the cases. The order of entry into discriminant analysis was used to deter-

mine the relative importance of factors as trade support influencers, as shown in Table 3. ■

Applications of common factor analysis

The data of Table 22.1 were analysed using the common factor analysis model.
Instead of using unities in the diagonal, the communalities were inserted. The output,
shown in Table 22.4, is similar to the output from principal components analysis pre-
sented in Table 22.3. Beneath the ‘Communalities’ heading, below the ‘Initial’ column,
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Standardised discriminant coefficients

Analysis of rating

Factor Function 1 Function 2

F1 Item importance 0.861 –0.253

F2 Promotion elasticity 0.081 0.398

F3 Manufacturer brand support 0.127 –0.036

F4 Manufacturer reputation 0.394 0.014

F5 Promotion wearout –0.207 0.380

F6 Sales velocity 0.033 –0.665

F7 Item profitability 0.614 0.357

F8 Incentive amount 0.461 0.254

Wilks’λ (for each factor) All significant at p < 0.001

Multivariate F ratios All significant at p < 0.001

Percentage of cases correctly classified 65% correct (t = 14.4, p < 0.001)

Table 2  Discriminant analysis results: analysis on rating and performance (n = 564)

Analysis of rating

Order of entry Factor name

1 Item importance

2 Item profitability

3 Incentive amount

4 Manufacturer reputation

5 Promotion wearout

6 Sales velocity

7 Promotion elasticity

8 Manufacturer brand support

Table 3  Relative importance of trade support influencers (as indicated by order of entry

into the discriminant analysis)



 

the communalities for the variables are no longer 1.0. Based on the eigenvalue crite-
rion, again two factors are extracted. The variances, after extracting the factors, are
different from the initial eigenvalues. The first factor accounts for 42.84% of the vari-
ance, whereas the second accounts for 31.13%, in each case a little less than what was
observed in principal components analysis.
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Variable Initial Extraction

V
1

0.859 0.928

V
2

0.480 0.562

V
3

0.814 0.836

V
4

0.543 0.600

V
5

0.763 0.789

V
6

0.587 0.723

Table 22.4 Results of common factor analysis

Bartlett test of sphericity 

Approximate chi-square = 111.314, df = 15, significance = 0.00000

Kaiser-Meyer-Olkin measure of sampling adequacy = 0.660

Communalities

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.731 45.520 45.520

2 2.218 36.969 82.488

3 0.442 7.360 89.848

4 0.341 5.688 95.536

5 0.183 3.044 98.580

6 0.085 1.420 100.000

Initial eigenvalues

Factor 1 Factor 2

V
1

0.949 0.168

V
2

–0.206 0.720

V
3

0.914 0.038

V
4

–0.246 0.734

V
5

–0.850 –0.259

V
6

–0.101 0.844

Factor matrix

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.570 42.837 42.837

2 1.868 31.126 73.964

Extraction sums of squared loadings

Factor Eigenvalue Percentage of Cumulative

variance percentage

1 2.541 42.343 42.343

2 1.897 31.621 73.964

Rotation sums of squared loadings

▲



 

The values in the unrotated factor pattern matrix of Table 22.4 are a little different
from those in Table 22.3, although the pattern of the coefficients is similar.
Sometimes, however, the pattern of loadings for common factor analysis is different
from that for principal components analysis, with some variables loading on different
factors. The rotated factors matrix has the same pattern as that in Table 22.3, leading
to a similar interpretation of the factors.

We end with another application of common factor analysis, in the context of con-
sumer perception of rebates.

‘Common’ rebate perceptions12

Rebates are effective in obtaining new users, brand switching and repeat purchases among

current users. A study was undertaken to determine the factors underlying consumer percep-

tion of rebates. A set of 24 items measuring consumer perceptions of rebates was

constructed. Respondents were asked to express their degree of agreement with these items

on five-point Likert scales. The data were collected by a one-stage area telephone survey con-

ducted in the Memphis metropolitan area. A total of 303 usable questionnaires was obtained.

The 24 items measuring perceptions of rebates were analysed using common factor analy-

sis. The initial factor solution did not reveal a simple structure of underlying rebate
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Factor 1 Factor 2

V
1

0.628 0.101

V
2

–0.024 0.253

V
3

0.217 –0.169

V
4

–0.023 0.271

V
5

–0.166 –0.059

V
6

0.083 0.500

Factor score coefficient matrix

Factor 1 Factor 2

V
1

0.963 –0.030

V
2

–0.054 0.747

V
3

0.902 –0.150

V
4

–0.090 0.769

V
5

–0.885 –0.079

V
6

0.075 0.847

Table 22.4 Continued

Rotated factor matrix

Variables V
1

V
2

V
3

V
4

V
5

V
6

V
1

0.928* 0.022 –0.000 0.024 –0.008 –0.042

V
2

–0.075 0.562* 0.006 –0.008 0.031 0.012

V
3

0.873 –0.161 0.836* –0.051 0.008 0.042

V
4

–0.110 0.580 –0.197 0.600* –0.025 –0.004

V
5

–0.850 –0.012 0.786 0.019 0.789* –0.003

V
6

0.046 0.629 0.060 0.645 –0.133 0.723*

Reproduced correlation matrix

The lower left triangle contains the reproduced correlation matrix; the diagonal, the communalities; and the upper right

triangle, the residuals between the observed correlations and the reproduced correlations.

e x a m p l e



 

perceptions. Therefore, items that had low loadings were deleted from the scale, and the

factor analysis was performed on the remaining items. This second solution yielded three

interpretable factors. The factor loadings and the reliability coefficients are presented in the

table below. The three factors contained four, four and three items, respectively. Factor 1

seemed to capture the consumers’ perceptions of the efforts and difficulties associated with

rebate redemption (efforts). Factor 2 was defined as a representation of consumers’ faith in

the rebate system (faith). Factor 3 represented consumers’ perceptions of the manufacturers’

motives for offering rebates (motives). The loadings of items on their respective factor ranged

from 0.527 to 0.744. ■

In this example, when the initial factor solution was not interpretable, items which
had low loadings were deleted and the factor analysis was performed on the remain-
ing items. If the number of variables is large (greater than 15), principal components
analysis and common factor analysis result in similar solutions. Principal components
analysis is less prone to misinterpretation, however, and is recommended for the non-
expert user.
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Factor loading

Scale itemsa Factor 1 Factor 2 Factor 3

Manufacturers make the rebate 0.194 0.671 –0.127

process too complicated 

Postal rebates are not worth the –0.031 0.612 0.352

trouble involved

It takes too long to receive the rebate 0.013 0.718 0.051

cheque from the manufacturer

Manufacturers could do more to make 0.205 0.616 0.173

rebates easier to use

Manufacturers offer rebates because 0.660 0.172 0.101

consumers want themb

Today’s manufacturers take real 0.569 0.203 0.334

interest in consumer welfareb

Consumer benefit is usually the 0.660 0.002 0.318

primary consideration in rebate offersb

In general, manufacturers are sincere 0.716 0.047 –0.033

in their rebate offers to consumersb

Manufacturers offer rebates to get 0.099 0.156 0.744

consumers to buy something they do 

not really need

Manufacturers use rebate offers to 0.090 0.027 0.702

induce consumers to buy slow-moving

items

Rebate offers require you to buy 0.230 0.066 0.527

more of a product than you need

Eigenvalues 2.030 1.344 1.062

Percentage of explained variance 27.500 12.200 9.700

Factor analysis of perceptions of rebates

a The response categories for all items were strongly agree (l), agree (2), neither agree nor disagree (3), disagree

(4), strongly disagree (5) and don’t know (6). ‘Don’t know’ responses were excluded from data analysis.

b The scores of these items were reversed.



 

Summary

Factor analysis is a class of procedures used for reducing and summarising data. Each
variable is expressed as a linear combination of the underlying factors. Likewise, the fac-
tors themselves can be expressed as linear combinations of the observed variables. The
factors are extracted in such a way that the first factor accounts for the highest variance
in the data, the second the next highest, and so on. Additionally, it is possible to extract
the factors so that the factors are uncorrelated, as in principal components analysis.

In formulating the factor analysis problem, the variables to be included in the
analysis should be specified based on past research, theory, and the judgement of the
researcher. These variables should be measured on an interval or ratio scale. Factor
analysis is based on a matrix of correlation between the variables. The appropriate-
ness of the correlation matrix for factor analysis can be statistically tested.

The two basic approaches to factor analysis are principal components analysis and
common factor analysis. In principal components analysis, the total variance in the
data is considered. Principal components analysis is recommended when the
researcher’s primary concern is to determine the minimum number of factors that
will account for maximum variance in the data for use in subsequent multivariate
analysis. In common factor analysis, the factors are estimated based only on the
common variance. This method is appropriate when the primary concern is to iden-
tify the underlying dimensions and when the common variance is of interest. This
method is also known as principal axis factoring.

The number of factors that should be extracted can be determined a priori or
based on eigenvalues, scree plots, percentage of variance, split-half reliability or signif-
icance tests. Although the initial or unrotated factor matrix indicates the relationships
between the factors and individual variables, it seldom results in factors that can be
interpreted, because the factors are correlated with many variables. Therefore, rota-
tion is used to transform the factor matrix into a simpler one that is easier to
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In ternet  and computer  app l icat ions

SPSS13

The program FACTOR may be used for principal components analysis as well as for
common factor analysis. Some other methods of factor analysis are also available
and factor scores are available.

SAS

The program PRINCOMP performs principal components analysis and calculates
principal components scores. To perform common factor analysis, the program
FACTOR can be used. The FACTOR program also performs principal components
analysis.

Minitab

Factor analysis can be accessed using Multivariate>Factor analysis. Principal com-
ponents or maximum likelihood can be used to determine the initial factor
extraction. If maximum likelihood is used, specify the number of factors to extract.
If a number is not specified with a principal component extraction, the program
will set it equal to a number of variables in the data set.

Excel

At the time of writing, factor analysis was not available.



 

interpret. The most commonly used method of rotation is the varimax procedure,
which results in orthogonal factors. If the factors are highly correlated in the popula-
tion, oblique rotation can be used. The rotated factor matrix forms the basis for
interpreting the factors.

Factor scores can be computed for each respondent. Alternatively, surrogate vari-
ables may be selected by examining the factor matrix and selecting a variable with the
highest or near highest loading for each factor. The differences between the observed
correlations and the reproduced correlations, as estimated from the factor matrix, can
be examined to determine model fit.

Appendix: Fundamental equations of factor analysis14

In the factor analysis model, hypothetical components are derived that account for
the linear relationship between observed variables. The factor analysis model requires
that the relationships between observed variables be linear and that the variables have
non-zero correlations between them. The derived hypothetical components have the
following properties:

1 They form a linearly independent set of variables. No hypothetical component is
derivable from the other hypothetical components as a linear combination of them.

2 The hypothetical components’ variables can be divided into two basic kinds of
components: common factors and unique factors. These two components can be
distinguished in terms of the patterns of weights in the linear equations that derive
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1 How is factor analysis different from multiple regression and discriminant analysis?

2 What are the major uses of factor analysis?

3 Describe the factor analysis model.

4 What hypothesis is examined by Bartlett’s test of sphericity? For what purpose is this

test used?

5 What is meant by the term communality of a variable?

6 Briefly define the following: eigenvalue, factor loadings, factor matrix and factor

scores.

7 For what purpose is the Kaiser-Meyer-Olkin measure of sampling adequacy used?

8 What is the major difference between principal components analysis and common

factor analysis?

9 Explain how eigenvalues are used to determine the number of factors.

10 What is a scree plot? For what purpose is it used?

11 Why is it useful to rotate the factors? Which is the most common method of rota-

tion?

12 What guidelines are available for interpreting the factors?

13 When is it useful to calculate factor scores?

14 What are surrogate variables? How are they determined?

15 How is the fit of the factor analysis model examined?

Questions ?????



 

the observed variables from the hypothetical components’ variables. A common
factor has more than one variable with a non-zero weight or factor loading associ-
ated with the factor. A unique factor has only one variable with a non-zero weight
associated with the factor. Hence, only one variable depends on a unique factor.

3 Common factors are always assumed to be uncorrelated with the unique factors.
Unique factors are also usually assumed to be mutually uncorrelated, but common
factors may or may not be correlated with each other.

4 Generally, it is assumed that there are fewer common factors than observed vari-
ables. The number of unique factors is usually assumed to be equal to the number
of observed variables, however.

The following notations are used.

X = an n × 1 random vector of observed random variables X1, X2, X3, . . . , Xn

It is assumed that

E(X)= 0
E(XX')= Rxx, a correlation matrix with unities in the main diagonal

F = an m × 1 vector of m common factors Fl, F2, . . . , Fm

It is assumed that

E(F) = 0
E(FF')= Rff , a correlation matrix

U = an n × 1 random vector of the n unique factor variables, Ul, U2, . . . , Un

It is assumed that

E(U) = O
E(UU') = I

The unique factors are normalised to have unit variances and are mutually uncorrelated.

A = an n × m matrix of coefficients called the factor pattern matrix
V = an n × n diagonal matrix of coefficients for the unique factors

The observed variables, which are the coordinates of X, are weighted combinations of
the common factors and the unique factors. The fundamental equation of factor
analysis can then be written as

X = AF + VU

The correlations between variables in terms of the factors may be derived as follows:

Rxx = E(XX')
= E{(AF + VU)(AF + VU)'}
= E{(AF + VU)(F'A' + U'V')}
= E(AFF'A' + AFU'V' + VUF'A'+ VUU'V')
= ARff A' + ARfuV' + VRuf A' + V 2

Given that the common factors are uncorrelated with the unique factors, we have

Rfu = Ruf' = 0

Hence,

Rxx = ARff A' + V 2

Suppose that we subtract the matrix of unique factor variance, V 2, from both sides.
We then obtain

Rxx – V 2 = ARff A'
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Rxx is dependent only on the common factor variables, and the correlations among
the variables are related only to the common factors. Let Rc = Rxx – V 2 be the reduced
correlation matrix.

We have already defined the factor pattern matrix A. The coefficients of the factor
pattern matrix are weights assigned to the common factors when the observed vari-
ables are expressed as linear combinations of the common and unique factors. We
now define the factor structure matrix. The coefficients of the factor structure matrix
are the covariances between the observed variables and the factors. The factor struc-
ture matrix is helpful in the interpretation of factors as it shows which variables are
similar to a common factor variable. The factor structure matrix, As, is defined as

As = E(XF')
= E[(AF + VU)F']
= ARff + VRuf

= ARff

Thus, the factor structure matrix is equivalent to the factor pattern matrix A multi-
plied by the matrix of covariances among the factors Rff. Substituting As for ARff, the
reduced correlation matrix becomes the product of factor structure and the factor
pattern matrix:

Rc = ARff A'

= AsA'
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